Now you see it, now you don’t: Time cloak created

? It’s one thing to make an object invisible, like Harry Potter’s mythical cloak. But scientists have made an entire event impossible to see. They have invented a time masker.

Think of it as an art heist that takes place before your eyes and surveillance cameras. You don’t see the thief strolling into the museum, taking the painting down or walking away, but he did. It’s not just that the thief is invisible — his whole activity is.

What scientists at Cornell University did was on a much smaller scale, both in terms of events and time. It happened so quickly that it’s not even a blink of an eye. Their time cloak lasts an incredibly tiny fraction of a fraction of a second. They hid an event for 40 trillionths of a second, according to a study appearing in today’s edition of the journal Nature.

We see events happening as light from them reaches our eyes. Usually it’s a continuous flow of light. In the new research, however, scientists were able to interrupt that flow for just an instant.

Other newly created invisibility cloaks fashioned by scientists move the light beams away in the traditional three dimensions. The Cornell team alters not where the light flows but how fast it moves, changing in the dimension of time, not space.

They tinkered with the speed of beams of light in a way that would make it appear to surveillance cameras or laser security beams that an event, such as an art heist, isn’t happening.

Another way to think of it is as if scientists edited or erased a split second of history. It’s as if you are watching a movie with a scene inserted that you don’t see or notice. It’s there in the movie, but it’s not something you saw, said study co-author Moti Fridman, a physics researcher at Cornell.

The scientists created a lens of not just light, but time. Their method splits light, speeding up one part of light and slowing down another. It creates a gap and that gap is where an event is masked.

“You kind of create a hole in time where an event takes place,” said study co-author Alexander Gaeta, director of Cornell’s School of Applied and Engineering Physics. “You just don’t know that anything ever happened.”